Methods of Quantum
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Erwin Schrodinger

Learning Objectives: (1887 — 1961)
After studying this chapter, students should be able to:

Understand the need of Quantum Mechanics.
Describe the wave function and its physical meaning.
Know about normalized wave function and expectation value of dynamical

variable.
Derive the time dependent and independent Schrodinger: wave equations

and its application.
Understand the Hydrogen atom problem.
Describe the radial and angular part of Schrodinger wave equation of

Hydrogen atom.
Explain the significance of various Quantum numbers.

Know. about degeneracy and energy. level of degeneracy of Hydrogen atom.
Explain the space quantization experiments.

Understand about the spin.
Explain the state of electron specified by four Quantum numbers.

Describe the atomic wave function. :
Solve various numerical problems related with Quantum Mechanics.
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1. Consider the particle in the ground state is represented by a wave function ¥Y(x) = B Sin

X
= within O < x < a. where B = \/% . What is (a) the average position (b) the average
momentum (c) the average energy of such particle? [TU Microsyllabus 2074, W; 20.2]

Solution:
We have the given wave function ¥(x) = B Sin (—?) = \E Sin (E)
a

a
a. The average position means the expectation value of positions x or < x> = [ W*(x) x P(x) dx
0

b.  The average value of momentum can be found by

2:4 o) X ] i
or, <P>= ”, (J; Sin (Tm) (— i hg) sin (T) dx, Since, P=-ih g
2.9 X X
or, = <P> =;E[) Sin (—a— (—ihfcos—a') dx

. o TX P
=§<—ih>[s-uﬁa@l

<P>=0.
This result makes physical sense. The particle is moving back and forth between the walls of the well.

The probability of finding the particle moving toward right is the same as probability of finding it
moving forward the left. Thus, the average value of the momentum has to be zero.

c.  Theaverage energy E or <E>can be calculated as

a : 10
<E>=|¥ ihé% ¥ dx. Since, E=ih3r.
0

-Eot

S ) ba;
or, <E>=[V¥ it | Poe X
0

Where, to describe the particle in the infinite potential well is described by ¥ = Ae h
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i.e., ¥ =ASin ot = Ae-™=Ae for E=ho.

-iEot
a -iE, _—
<e> =[w" (in) (—’h—) We M dx

=

a
or, <E> =[E,¥'V¥dx
0

<E> =<E,>
Thus, when the particle is in the ground state,

-iEot
w=Ae N | In this case the particle has a well defined energy E= E,. We expect that the average va]ye Wi

the Eigen function associated with the particle wag given

be the actual value.

Calculate the normal Zeeman splitting of the calcium 4226 A line when the atomg -

2.
[TU Microsyllabus 2074, W; 21,

placed in a magnetic field of 1.2 Tesla.

Solution:

The wave length (A) = 4226 A = 4226 x 10-'m.

Magnetic field (B) = 1.2T

Normal Zeeman splitting (dA) = ?

We know that, |dE| = AE ='2%1L Bh

1.6 x 10-19x 1.2 x 1.05 x 10-3 <hy

(HE0= 2%9.1x10-1 e b o
dE=1.11%x10-2] =6.92x10-5eV.

h
We know that, Egpoun=hv =5

hc b
dE=—de \ - W<«
\
hc

|dE| =75 |dA]

)\'!
So, |dA| =t IdE| ~

4.226 x 107 x 1.11 x 10-2 : 2
[dhf == e si - =996 10-2m =00996A g

Thus, The normal Zeeman splitting |dA| = 0.0996A.

A beam of Hydrogen atom is used in Stern-Gerlach type experiment. The atom emerges
from the oven with a velocity 104 m/sec. They enter a region 20 cm long where there isa
magnetic field gradient 3 x 10*T/m. The field gradient is perpendicular to the incident
velocity of the atoms. The mass of the Hydrogen atom is 1.67 x 10-27 kg. What is the
separation of the two components of the beam as they emerge from the magnet?

[TU Microsyllabus 2074, W;

21.7

Solution:
Velocity of atom (v) = 10*m/sec

dB
Magnetic field gradient (E) =3x104]/m.

Mass of Hydrogen atom (m) = 1.67 x 10-7kg.

Separation of the two components of beam = ?
In the ground state, Hydrogen atom has no net orbital magnetic dipole moment. The only dipole mormer

le|l —

is the one associated with the spin of the electron in the 1s state, that is (u;) = " s

d
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So, from Stem Gerlach experiment

_l_L dB 1J__]_dB

”5 dz S: "% m dz Since, m = mass of element
Using Newton's Second law, F, = a,muiom 1™
dB
E, le| hg,

a =
or, Z Matom 2m Matom

1.60 x 10-19 x 1.05 X 10-% x 3 x 104
2x9.1x1031x1.67x 107 - 1:65x108m/sec?

The deflection of each component in the direction of the force (z -axis) will be

az=

=] aztz Where, t is the time that the atom spend in the magnet.

This time can be found by dividing the length of the magnet by the incident velocity of the atoms.

__020m _ 3
SO, t—lmm/sec =2x10 Sec.

1
Therefore, Az = 7 X 1.65 x 1010 x 4 x 10-10

Az=33%x102m =33 cm.

The two possible values for ms. Some atoms will be deflected upward and some downward. Therefore, the
separation between the two components of the beam will be 2Az. So, 2 x 3.3 cm = 6.6 cm.

4, Show by direct substitution into the time dependent Schrodinger equation for the free

&

particle, that y(x, t) = A cos (kx - @t) is not a solution. [TU Microsyllabus 2074, P;20.1] \
Solution:
Here is given, Wave function y(x, t) = A cos (kx - ot) s4(1) b |

We know that, time dependent Schrédinger wave equation
-h2 dy(x, 1) H{gx, t)
=ih ~(2)
2m o
From equation (1) and (2), we get
-h292[A cos (kx - cot)] i d[A cos (kx - ot)]
2m ox2 ot

h2k2
om A cos (kx - ot) =ih () A sin (kx - ot)
hzk2 -
om Y t) = ioh A sin (kx - wt) (not satisfied)
Hence, y(x, t) = A cos (kx - @t) is not a solution of time dependent Schrodinger equation for the free
particle.
5. For a free Quantum particle show that the wave function ¥(x, t) = A cos kx et satisfies
the time dependent Schrodinger equation. [TU Microsyllabus 2074, P; 20.2 and TU Model 2074]
Solution
Here,wave function ¥(x, t) = A cos kx e=i* wa(1)
We know that, time dependent Schrodinger wave equation
h2 o2y B‘ng, t)
o B % .(2)
From equation (1) and (2), we get A
h2 0%A cos kx e- o) - 9(A cos kx e~ 1)

= 2m ox2 =4 ot
h2k2
o S ¥(x t) =ho ¥(x, t)
or, ‘L‘P(x §) =E¥(x, 1) ...(3) Since, p = hk and E = ho




: itten as,
Again, time dependent Schrodinger wave equation can be writte

| = ..(4)
| EW(x, t) = H¥(x, t) | e
(4) are same so the given wave function satisfies th
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{

e time dependent Schy, -
Hence, equation (3) and Todinge

'\‘ equation.
6. Explain, why the following Eigen function are
equation.

not acceptable solution of the Schrodiy,

[TU Microsyllabus 2074, p, o+

0.3]
a. xx)=0 forx<O0

% (%) = A cos kx forx20
iKx

b. x(x)=A—
c. x=A {nkx
Solution:
Here is given, wave functions are as following;
a.  x(x)=0 forx<0
% (x) = A cos kx forx=0
eikx

b. X g=Ans

c.  x=A fnkx
We know that, time independent Schrodinger wave equation

M~ _h232 < i
é TE: A Erh;%é =EX+ Ph’ For potential energy E,=0 -~

.‘b§

= = = |

2 ;
or, gg‘ * Zh_T (E-Ep)x=0 ... (1) For certain potential E,

' Then, those solutions are acceptable which satisfied equation (1).

' ‘ For (a):

‘ % (x) =0 for x < 0. It is not a solution of S.W.E because S.W.E. has finite wave function as a solution not zero
fl and there is no meaning.

' For (a) x(x) = A cos kx for x>0

d2(A cos kx) i 2m(E - Ep)x Ls

i Equation (1), will be ) ™
2 =
- k2A cos kx +—m‘(%)—l =0

2m
-k + e (E-Ey=0

A etkx
Again, for (b) x = :
d A iketkx |
Here,a% =IT + A eikx (;)
diy o A(ik)letx Wi o /-1 A jket |
dxit s, + A ik eikx ('x—z) - + A ek (-) (-2) =

i
| - Ak2elx DA jk 2Aeikx
—— _—2 eikx + 3

| X

| - oy 2 22

x2
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The Schrodinger wave equation,
dzy 2m
gf;+g?(E-Ep)x=0

2ikx 2% 2m
Ry=—""*a *m (E~E)i=0

2k (2  2m
e, K- *32 *Tz (E-Ep) =0hasno solution and meaning]ess.

Orf R

For % = A fnkx .Then,
dx =d(A fmkx)  Ad fnkx d(kx)

dx dx d(kx) dx
1
= Akg
A dx A
=% and g2 =~

Now, Schrodinger wave equation,

dzy 2m
E;(Xz‘*_ﬁz— (E-Ep)x=0

A 2m
-2 T (E-Ep)x=0 - §

Hence, given Eigen functions are not acceptable solution of the Schrodinger equation because they does not

satisfied in the equation which are discussed above. S
7., What is the probability of finding a particle in a well of width 'a’ at a position % from the ‘
\[Q ifn=1,ifn=2,ifn= . _ A2 . DR

wall if n ,if n , if n = 3. Use the normalized wave function, y (x, t) = a sin T~ % N

-iEt

eh. [TU Microsyllabus 2074, P; 20.12]
Solution:

Here is given, width of well =a

a
Position (x) = z
-iEt

nmx
— el
a

2
Normalized wave function y(x, t) = \/; sin
We know that, probability of finding a particle, P = y*y ot 3¢

a
Then,atx=4
. 2 n_ne—+£,E'( 2 Me“f‘)
P asin;.ge asin.ze
2 . It
B = sm24
4 2 % 21N 1
lfn—l,P1=;sm24=a(\/§) =
2 2n 12
Forn=2,P2=;sinzT=;

32r- 2 . 21
Andforn=3,P3=§ sie T ® o sin2 135 =;($)

P3=

o =

Hence, the probability of finding a particle in a well of width of a position x =7 form the wall for n =1,

1l 2 1 :
n=2andn=3 ares and 7 respectively.
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ssumed to move in cjr
8. In the Bohr Model of hydrogen atom, the electron is 1: R it il Ehe culay o
around the proton, that is motion takes place in a plan Y plang, U

=2
: d the fact that P, > (Ap,
the uncertainty principle in z-direction, i.e. AP: 2 h an z 2 (AP;)2 ¢ shoy

that the motion of the electron cannot be planar motion. (TU Microsyllabus 2074, p 21,

)
Solution: .
According to uncertainity principle position of a particle is more e.iccu.rately (e, SI"naller Ax), b
momentum is less accurately (i.e., larger Ap) and vice-varsa. If the particle is fully move in Xy-plane the
uncertainty in z is zero. i.e., Az = 0 but the uncertainity principle suggest that,

Az AP, >2h
It will be violated if Az is zero and AP, is finite. Therefore Az should be greater than zero it Mean g,
motion of the particle cannot be planar.
9. (a) How many atomic states are there in Hydrogen with n = 3?
(b) How are they distributed among the sub shells? Label each state with appropriate et
of Quantum numbers n, ¢, m,, ms.
(c) Show that the number of states in a shell, that is, states having the same n, is gie,
by 2n2. [TU Microsyllabus 2074, P; 21.6 and TU Exam 2074
Solution:
Here is given,
a.  Principle Quantum number (n) = 3
n(n+1)=3(3+1)=6

Number of atomic states = 5 3
They are
1s
2s 2p
3s3p 3d
b.
SN State n ¢ m;> ms No. of states in shell
1 For 1s state 1 0 0 ¢ 1
2
2 For 2s state 2 0 0 1 1!
2
3 For 2p state 2 1 0; £1 1 3
2
4 For 3s state 3 0 0 il 1
2
5 For 3p state 3 1 0, +1 1 3
2
6 For 3d state 3 2 0, 1, . &2 1 5
2

¢ Now, number of states in shell having Quantum number 1s2, 252, 2ps6, 352 3ps i.e., 18.



